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Abstract

The primary purpose of this work is to demonstrate that the location of a crack can strongly a�ect the sequence of

plastic hinge development which in turn a�ects crack stability of a structure. A speci®c example of an elastic±plastic ring

loaded with diametrically opposite concentrated loads is employed to investigate these e�ects. The method used is based

on elastic superposition to obtain the elastic±plastic behavior and to evaluate the crack stability with plastic hinges

present. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the analysis of limit loads, that is, the ®nal collapse loads of plane structures, a rigid-plastic analysis is
most often employed. The limit load is looked upon as the ``failure'' load of the structure. However, if a
crack is present, instability of the crack may intercede at loads less than the limit load to induce ``premature
failure''. The analysis of crack instability prior to (or at) ®rst yield load has been the subject of a great deal
of fracture mechanics literature.

On the other hand, elastic±plastic analysis of statically indeterminate structures of long slender members
in bending, from ®rst yield load to limit load, involves a sequential formation of plastic hinges at inter-
mediate loads. The total member of plastic hinges becomes the degree of statical indeterminacy plus one at
collapse. It is the objective of this paper to demonstrate that the location of the crack can strongly a�ect the
sequence of plastic hinge development, as well as the crack location, a�ects crack stability. In order to
clearly demonstrate these e�ects, the speci®c example of an elastic±plastic ring loaded with diametrically
opposite concentrated loads is adopted.

Such a ring is three times redundant so that the ®nal collapse mechanism requires four plastic hinges.
The ®nal collapse mechanism is itself always regarded as unstable (neglecting hardening) and can be an-
alyzed by simple rigid-plastic analysis, so it is of little interest here. However, the analysis of the sequence of
formation of the ®rst three plastic hinges, and the e�ects of crack location on that sequence and crack

International Journal of Solids and Structures 38 (2001) 1355±1367

www.elsevier.com/locate/ijsolstr

* Fax: +886-3-537-3771.

0020-7683/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S00 2 0-7 6 83 (0 0 )0 00 9 5- 0



stability will require elastic±plastic analysis. The double symmetry of the example selected will simplify the
analysis and allows reasonable analytical solution through elastic superposition of fundamental cases to
obtain the elastic±plastic behavior (with hinges), as well as crack stability assessment as hinges sequentially
form. It is believed that this analytical method will clarify all assumptions for the reader, which might be
left unclear if a fully numerical method such as ®nite element analysis was employed. Indeed, the super-
position method will especially greatly enhance the understanding of the indeterminate structure e�ects on
crack stability.

With these objectives in mind, the analysis shall proceed to establishing the conditions for development
of the ®rst, second, and third plastic hinges, respectively, and later to the conditions for crack instability.

2. Development of a ®rst plastic hinge

The example chosen of a cracked ring with diametrically opposite concentrated loads is shown sche-
matically in Fig. 1.The ring and its loading are doubly symmetric, indicated by , except for the crack
loaded by a. The mean radius of the ring is R and its radial thickness is t, and it will be assumed to be of
uniform unit thickness perpendicular to its plane. P is the load and h locates any section around the ring. It
shall be assumed that the ring is long and slender, R=t P 10, so that deformation due to in-plane bending is
the only signi®cant deformation. Moreover, it shall be assumed that the moment, M, versus curvature
changes, 1=qÿ 1=R, relationship of elements of the ring are ideally elastic±plastic as in Fig. 2, following the
solid curve, where plastic hinge formation occurs upon reaching the fully plastic moment, Mp. For the
cracked element, the same assumption is made except that the reduced hinge moment will be denoted by
MpCR. The crack depth, a, if not otherwise speci®ed, will be taken to be a � 0:3t, so that assuming plane
stress constraint at the cracked section plastic hinge, then MpCR/Mp� 0.5 for illustrative purposes. Now, in
order to attempt to ®nd the load, P1, at which the ®rst hinge forms and its location, it is noted that the ring

Fig. 1. Cracked ring with diametrically opposite concentrated loads.
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can be analyzed as completely elastic up to that load. As a ®rst approximation of the moments in a cracked
elastic ring, the internal moments, M0, in an ``uncracked'' ring as in Fig. 3 might be used. The elastic
solution for the uncracked ring gives the results for M0/PR in Table 1. However, the crack reduced the
sti�ness of the ring at the cracked section, causing a redistribution of the moment in the ring. This re-
distribution can be analyzed by the superposition method in Fig. 3.

In Fig. 3, the crack is taken to be at a � 0°, a point of reasonably large moment, M0, as noted from Table
1. Having a crack at this location imposes a large moment on the cracked element that should be relaxed by
some unknown amount, DM , because of the extra rotation at the crack site, D/CR, imposing that same

Fig. 2. Relationship of moment and curvature changes.

Fig. 3. Crack at a � 0°.

Table 1

The uncracked ring (values repeat in each quadrant)

h 0° 15° 30° 45° 60° 75° 90°

M0/PR 0.182 0.165 0.115 0.036 )0.068 )0.189 )0.318
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rotation on a ring hinged at the crack site results in the reduced moments, DM . To determine the proper
reductions, DM analysis of the hinged ring cracked element must be done equating the angle changes; that
is

D/HINGE � D/CRACK: �1�
Table 2 shows the values of the corrected moment, M, around the ring including the elastic sti�ness

reduction at the cracked section for a/t ratios of 0.3, 0.4, and 0.5, also including di�erences in MpCR due to
these larger crack size ratios.

Inspecting Table 2 and comparing it with Table 1, it is noted that for a/t� 0.3, the relaxation of moments
caused by the crackÕs elastic sti�ness reduction is 4% or less, but for deeper cracks such as a/t� 0.5, the
relaxation is as much as 30%. Nevertheless, if we wish to predict the location of the ®rst plastic hinge, it can
be done by comparing the ratios of the elastic moment at the crack (h � 0°), MCR to the maximum moment
in the uncracked part of the ring, Mmax (all at h � 90°) with the limit moment ratios, MpCR/Mp. The
conclusion is that the crack location (a � 0°) is the ®rst hinge location for a/t of 0.3 and greater, otherwise it
will be the loading point (h � 90°). These comparisons are shown in Table 3.

It is of interest to note from Table 3 that if a crack smaller than a/t� 0.25 were present in a ring prior to
loading and if the crack grows during application of the loading to development of the ®rst hinge, then the
anticipated ®rst hinge site might switch due to that growth. However, it then would be expected that second
hinges would form at the originally expected locations with little additional loading. But beyond this
comment, the e�ects of crack growth will be left for later work.

The relative load at which ®rst hinges form is also of interest here. From Table 1, for an uncracked ring,
the maximum moment is at the load point (h � 90°), and when that moment reaches Mp, the ®rst hinge
forms or

PI � Mp

�0:318�R �
pMp

R
; �2�

where PI is thus the ®rst hinge load of an uncracked ring or the largest, ®rst hinge load, P1, possible for a
cracked ring. From Table 3, it is noted that for small cracks a=t < 0:3 (and a � 0°), the ®rst hinge is at the
load point or P1�PI. However, for a=t P 0:3, the ®rst hinge is at the crack location where the hinge
moment is reduced by MpCR/Mp. For that circumstance,

Table 2

h and values of M/PR (for a � 0°, and R/t� 10)

a/t h MpCR/Mp P1/PI

0° 15° 30° 45° 60° 75° 90° 180°

0.3 0.177 0.160 0.111 0.032 )0.070 )0.189 )0.316 0.190 0.49 0.88

0.4 0.164 0.147 0.099 0.022 )0.078 )0.194 )0.319 0.197 0.36 0.70

0.5 0.136 0.120 0.074 0.000 )0.096 )0.208 )0.328 0.209 0.25 0.58

Table 3

Values of MCR/Mmax and MpCR/MP for a � 0°

a/t MCR/Mmax MpCR/Mp a � 0°

0.1 0.57 ® 0.81 First hinge at load point

0.2 0.57 ® 0.64

0.3 0.56 ¬ 0.49 First hinge at crack

0.4 0.51 ¬ 0.36

0.5 0.41 ¬ 0.25
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P1 � Mp

M
PR

ÿ �
R

MpCR

Mp

; �3�

where (M/PR) are the appropriate values in tables such as in Table 3. Consequently, the ratio by which the
®rst hinge load is reduced in a cracked ring where the hinge occurs at the crack is

P1

PI

� �0:318�
M
PR

ÿ � MpCR

Mp

: �4�

The last column in Table 2 is obtained from this expression. Note from this column that there is a sub-
stantial reduction in ®rst hinge loads for large enough cracks, a=t P 0:3, and for locating the crack at
a � 0°.

Finally, the in¯uence of crack location on ®rst hinge formation and its location (not necessarily at the
crack) is of interest here. These results may be obtained using the superposition method of Fig. 3, but with
the hinges and crack element at a position a from the three-oÕclock position as indicated in Fig. 1. The
results are in Table 4.

In Table 4, note that it has been assumed that the crack is into the inside or outside of the ring, so that it
is on the tension side for each location, a. Also notice that the ®rst hinge occurs at the crack location, when
that location is at a relatively high moment in the uncracked ring, that is, h � 0° to 15° and h � 75° to 90°.
However, for locations with relatively low moment, the ®rst hinge forms at the maximum moment location,
h � 90°. Finally, it is noted that the ®rst hinge load, P1, is a�ected appreciably only when the ®rst hinge
forms at the crack location. Of course, the largest reduction in relative load, P1/PI, is for placing the crack
at the maximum moment point, h � 90°. Upon comparing the values of M/PR in Table 4 with Table 1, the
e�ects of the changes of elastic sti�ness of the ``crack element'' are also noted to be appreciable only when
the crack is placed at a relatively high moment position. Of course, this e�ect would increase with larger a/t
values (a/t� 0.3 in Table 4), but for this example it is really quite small.

3. Development of the second plastic hinge

In an uncracked ring, the second hinge develops at the same time as the ®rst hinge, at the load points or
points of maximum moment. Therefore, the second hinge load, PII, for the uncracked ring is

PII � PI � pMp

R
: �5�

The load for second hinge formation will be measured against this same relative load, PI.

Table 4

h and values of M/PR (for a/t� 0.3, and R/t� 10)

a h P1/PI First

hinge0° 15° 30° 45° 60° 75° 90° 180°

0° 0.177 0.160 0.111 0.032 )0.070 )0.189 )0.316 0.190 0.88 0° At crack

15° 0.177 0.160 0.110 0.031 )0.072 )0.190 )0.317 )0.189 0.97 15° At crack

30° 0.178 0.160 0.109 0.031 )0.072 )0.192 )0.318 0.188 1.00 90° At Mmax

45° 0.178 0.160 0.109 0.031 )0.072 )0.191 )0.318 0.186 1.00 90° At Mmax

60° 0.178 0.160 0.109 0.031 )0.072 )0.191 )0.318 0.186 1.00 90° At crack

75° 0.182 0.163 0.110 0.032 )0.073 )0.194 )0.323 0.186 0.80 75° At crack

90° 0.184 0.164 0.113 0.032 )0.073 )0.193 )0.321 0.184 0.78 90° Both

Outside crack Inside crack

Italicized terms indicate diagonal crack location.

L.-J. Young / International Journal of Solids and Structures 38 (2001) 1355±1367 1359



Again, the elastic superposition method can be used even though a ®rst hinge is already formed. This is
explained using Fig. 4.

From the situation just at the formation of the ®rst hinge (®rst ring in Fig. 4), one may add the solution
for an uncracked ring (second ring in Fig. 4) with a load increase, P2 ÿ P1, but that adds a moment, Mb, at
the ®rst hinge location, b. Since no moment, Mb, should be added at a hinge, subsequently, the solution of a
ring hinged at b with opposite moment, Mb, must be added (third ring in Fig. 4) to keep the proper hinge
moment at the ®rst hinge. The P2 ÿ P1 added is determined by having it just attain the yield moment at some
location other than b in the ring (last ring in Fig. 4). This gives exactly the ring result when the ®rst hinge
forms at the crack. For the cases where the ®rst hinge does not form at the crack, the elastic sti�ness change
of the crack should be included to be exact. However, comparing Tables 1 and 4, the e�ect of those changes
are very small for the cases where ®rst hinges do not form at the crack (a � 30° to 60°). Consequently, they
shall be neglected in this example. Of course, it is possible to account for them using an additional su-
perposition in the nature of Fig. 2.

With the preceding assumptions, Table 5 has been prepared. It is noted that the resulting second hinge
locations are all at load points. For the symmetric case of a � 0°, the hinges form at 90° and 270°, si-
multaneously. For the cases where the cracks are at relatively low moment locations, a �
30°; 45°; and 60°, the hinge at 90° forms ®rst and at 270° second, but within a 1% change in load, almost
simultaneously, except for the slight in¯uence of reduced elastic sti�ness at the crack location. However, for
cases of a � 0° and 15°, the hinges at the crack locations tend to reduce the moments at the load points

Fig. 4. Formation of the second hinge.
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resulting in a slightly higher load required to form the second hinge (see P2/PI). On the other hand, when
the crack is placed near or at the load point, a � 75° and 90°, the load to form the second hinge is sub-
stantially reduced (see P2/PI), but not nearly so much as the load to form the ®rst hinge was reduced (see
Table 4).

4. Development of the third plastic hinge

Once again, the formation of the full analysis at the instant of development of the third plastic hinge can
be done using elastic superposition of results from ``standard solutions''. The approach used is shown in
Fig. 5.

The analysis begins with the solution for the ®rst two hinges as in Table 5. For the crack location, a � 0°,
the third hinge is already formed and nothing need be added. For other crack locations (a 6� 0°), the so-
lution for a full elastic ring with an increment of load, P3 ÿ P2, is added. But this adds moments M1 and M2

at points where the ®rst two hinges have formed. One can then add the solution to a ring with two free
hinges with two opposite moments, M1, and M2 applied to cancel the increase in moments at the original
plastic hinges. The load, P3, is then adjusted so that the maximum moment at all positions away from the
®rst two hinges in the summed solution just reaches the plastic hinge moment. Notice that the solution to
the ring with two free hinges loaded by M1 and M2 can be formulated by the superposition of two solutions
to the ring with a single hinge, so actually no new standard solutions are required here.

For the border perspective, it is more relevant to combine Tables 4±6 into a composite of the sequence of
hinge formation as a�ected by the crack location. This is given as Table 7. The notations, 1 through 4,
indicate the ®rst through fourth hinges formed, respectively. The notations, 2, 3, and 3, 4 indicate simul-
taneous formation of two hinges, symmetric case of no crack.

Indeed, the widely varied pattern of the sequence of hinge formation in Table 7 is quite surprising.
Simply, the change of the crack location (for a given crack size, a/t� 0.3, and ring slenderness ratio,
R/t� 10) causes this wide variation in the pattern. Moreover, except for having the crack at the load point,
a � 90°, the relative loads for hinge formation do not vary greatly (less than 10% except for the ®rst hinge
for a � 75°, near the load point). This seems quite surprising in view of the wide variety of hinge sequences.

One can further note here that the fourth (last) hinge forms either at 180° or 0°, which means that an
elastic path connects the load points up until the fourth hinge forms. Since this method computes the elastic
bending moments on that elastic path, the relative load point displacements can easily be computed for
each successive hinge formation load, including the fourth hinge. Thus, a complete load±displacement
diagram may be constructed, since that diagram will be linear between successive hinge formation loads.

Table 5

h and values of M/PR (for a/t� 0.3, and R/t� 10)

a h P2/PI P2/P1 Second

hinge0° 15° 30° 45° 60° 75° 90° 180° 270°

0° 0.150 0.132 0.089 0.010 )0.083 )0.189 )0.305 0.178 )0.305 1.04 1.18 90°, 270°
15° 0.169 0.153 0.103 0.027 0.079 0.188 )0.312 0.179 )0.295 1.01 1.04 90°
30° 0.181 0.164 0.114 0.035 )0.067 )0.189 )0.318 0.182 )0.318 1.00 1.00 270°
45° 0.181 0.164 0.114 0.035 )0.667 )0.189 )0.318 0.182 )0.318 1.00 1.00 270°
60° 0.181 0.164 0.114 0.035 )0.067 )0.189 )0.318 0.182 )0.318 1.00 1.00 270°
75° 0.183 0.174 0.131 0.038 )0.050 )0.172 )0.302 0.169 0.351 0.90 1.13 270°
90° 0.150 0.169 0.157 0.112 0.004 )0.100 )0.235 0.150 )0.480 0.66 1.37 270°
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5. Crack stability with plastic hinges present

The stability of a crack in a ring with a plastic hinge at the crack is of interest here. For a crack when the
crack location remains elastic, the stability analysis is regarded as well known and not considered here. In
the ring problem, a method of tearing crack stability for at least a plastic hinge at the crack with the
possibility of one or two (or none) additional plastic hinges at other locations in the ring will be developed.
Development of a fourth hinge loads to plastic collapse (unstable), so it is not of relevance. The devel-
opment will again make use of elastic superposition in the analysis. This type of superposition method was
®rst given in Paris and Tada (1983) and Kaiser and Carlsson (1983) and is, as yet, not widely known. The
stability analysis is explained here using Fig. 6. In this ®gure, the explanation starts with a ring with a
plastic hinge at the crack size, a, and another plastic hinge, shown at the upper load point.

Now, if the crack size should increase by Da, then the hinge moment at the crack will be reduced by
ÿDMpCR, while at the additional hinge no moment change occurs (provided additional deformation occurs
in the same direction). Also, the load can be taken to stay constant (for dead-weight loading). Therefore,
the ``change state'' to be added to the original state to get the ®nal state is shown in the second ring of Fig.
6. In the ``change state'', additional plastic hinges are free hinges so that the hinge moment, Mp, does not
change from the original state to the ®nal state (however, if an additional hinge unloads during the change,
it should be replaced by no hinge, or a locked hinge since elastic unloading will occur). At the plastic hinge

Fig. 5. Formation of the third hinge.
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Table 6

h and values of M/PR (for a/t� 0.3, and R/t� 10)

a h P3/PI P3/P2 Thid

hinge0° 15° 30° 45° 60° 75° 90° 180° 270°

0° 0.150 0.132 0.089 0.010 )0.083 )0.189 )0.305 0.178 )0.305 1.04 1.00 90°, 270°
15° 0.165 0.150 0.103 0.028 )0.070 )0.183 )0.305 0.202 )0.305 1.03 1.02 270°
30° 0.216 0.198 0.147 0.065 )0.040 )0.166 )0.300 0.216 )0.300 1.06 1.06 30° (C)

45° 0.280 0.261 0.203 0.116 )0.001 )0.135 )0.281 0.281 )0.281 1.13 1.13 180°, 0°
60° 0.280 0.261 0.203 0.116 )0.001 )0.135 )0.281 0.281 )0.281 1.13 1.13 180°, 0°
75° 0.264 0.247 0.195 0.097 )0.002 )0.132 )0.269 0.224 0.269 1.02 1.30 90°
90° 0.371 0.377 0.342 0.267 0.129 )0.012 )0.176 0.371 )0.371 0.88 1.33 0°, 180°

(C) indicates at crack.

Table 7

h at hinge locations (for a/t� 0.3, and R/t� 10)

a h P1/PI P2/PI P3/PI

0° 15° 30° 45° 60° 75° 90° 180° 270°

0° 1 2, 3 4 2, 3 0.88 1.04 1.04

15° 1 2 4 3 0.97 1.01 1.03

30° 3 1 4 2 1:00ÿ 1:00� 1.06

45° 4 1 3 2 1:00ÿ 1:00� 1.13

60° 4 1 3 2 1:00ÿ 1:00� 1.02

75° 1 3 4 2 0.80 0.90 1.02

90° 3, 4 1 3, 4 2 0.48 0.66 0.88

No

Crack

3, 4 1, 2 3, 4 1, 2 1.00 1.00 1.27

Italicized terms indicate diagonal crack location.

Fig. 6. Illustration of superposition.
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at the crack with crack growth, Da, the hinge moment is reduced, )MpCR, so an additional rotation of the
hinge at the crack D/CR will occur. This additional deformation can cause the crack to advance further yet
to drive the crack extension. Thus, the D/CR=DMpCR in the ``change state'' controls whether the crack will
be stable or not, and can be computed for the elastic ring with free hinges with DM applied at the crack site
to get D/ there. That is simple elastic structural calculation, so it shall be denoted as such

D/
DM jstructure

� D/CR

DMpCR

� negative �6�

and will result in a ``negative'' value as noted.
Now, the tendency toward instability as just noted is resisted by the material element containing the

crack. That element with a crack could simply be tested for its resistance. Fig. 7 gives the nature of that test,
where we simply take a cracked element with a crack of the correct initial size from a ring of the material
(and ambient conditions) of interest. It is loaded with pure moment, M, at its ends and the rotation due to
the presence of the crack, /, is to be measured. The M versus / so obtained will ®rst reach a horizontal
asymptote, if a plastic hinge is formed (as assumed as a precondition here). As crack growth begins to
occur, the M versus / curves will turn downward (either gradually or abruptly) and later always exhibits a
lesser scope of decent, so that a maximum rate of decent, DM=D/jmax or minimum, D/=DM jmaterial element, for
the material element may be identi®ed. Now, the crack will remain stable if the structure sheds moment
faster at the cracked section for a given D/, than the material element does. That is

D/
DM

���� ����
structure

<
D/
DM

���� ����
material element

�7�

implies stable, where absolute values (not negative values) are compared. Since the minimum value of the
material elementÕs resistance is used, this criteria guarantees crack stability independent of the amount of
hinge rotation at the cracked section.

However, as hinge rotation, /, occurs with crack growth, the plastic hinge moment, MpCR, will be re-
duced, which might cause changes in plastic hinge patterns such as the sequence of hinges. That can be
assessed but will be left for later work.

On the other hand, it is of further interest here to evaluate jD/=DM jstructure for the hinge patterns
demonstrated in Table 7 for our example problem of a ring with diametrically opposite concentrated loads.
That evaluation is to be done for the change state model in Fig. 6. Referring to Table 7, three cases occur
when one of the ®rst three hinges form at the crack location. These cases are shown in Fig. 8. They are
discussed in terms of their speci®c relevance; see Table 7.

Fig. 7. Response of cracked element.
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Case (a): This applies to all situations where the ®rst hinge forms at the crack location, that is,
a � 0°; 15°; 75°; and 90°. Analysis leads to

D/
DM
� 12R

Et3

2

3
p

� �
: �8�

Case (b): This applies to all situations where one of the ®rst two hinges forms at the crack and a second
forms (but not a third simultaneously) at an arbitrary location c. This applies to a � 15°, 75°, and 90° in
Table 7 where c � 75°; 165°; and 180°, respectively. Analysis leads to

D/
DM
� 12R

Et3

6p

9ÿ �1� 2cosc�2
" #

: �9�

Case (c): This applies to situations where three hinges are formed, one at the crack. Note that for all of
these hinge cases (but not four simultaneously) that the non-crack location hinges are 180° apart in Table 7.
Analysis leads to

D/
DM
� 12R

Et3

p
cos2a

h i
: �10�

Eqs. (8)±(10) cover all the cases in Table 7 where a hinge has formed at a crack. Eq. 8 is appropriate where
one hinge is present and applies as jD/=DM jstructure for the loads from ®rst hinge formation up to second
hinge formation. Similar load limits apply to Eqs. (9) and (10), so that as the loads are applied and hinges
develop, each is relevant to load intervals between hinge formation. It is noted that these formation for
D/=DM do not contain the load explicitly or, for that matter, the crack size (which is contrary to fracture
mechanics in the elastic range).

6. The use of elastic±plastic fracture mechanics J-integral methods for predicting material element behavior

analysis

The experimental method for determination of D/=DM jmin for the material element containing the crack,
as depicted in Fig. 7, is the ``true'' way to determine this quantity for a given initial crack size. However, a
practical (conservative) approximation for this quantity may be obtained through a J-integral analysis
making use of a J-integral analysis for material properties.

Let the J-integral for this application to bending be de®ned by its compliance from Rice (1967) or

Fig. 8. Three cases for which one of the hinges forms at the crack (all rings with free hinges and DM applied).
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J � ÿ
Z

oM
oa

����
/

d/: �11�

Under plastic hinge conditions at the crack site and assuming no hardening of the material, the moment, M,
is the limit moment, ML, which depends on crack size but not on /. Therefore,

ÿ oM
oa

����
/

� ÿ dML

da
� dML

db
; �12�

where a is the crack size and b is the remaining uncracked ligament size at the cracked section. From Eqs.
(11) and (12), it follows that

dJ � dML

db
d/: �13�

Further, by de®nition,

dML � dML

da

� �
da � ÿ dML

db

� �
da: �14�

Combining Eqs. (12) and (14), it is found that

D/
DM

����
material element

� d/
dML

� ÿ
dj
da

ÿ �
dML

db

ÿ �2
: �15�

As noted previously with Eq. (7), it is appropriate to take the absolute value, neglecting the negative sign
in Eq. (15), and to use this result to obtain a minimum value for the material element to assume crack
stability. That is to say we should insert a maximum value for dML/db and a minimum value for dJ/da.
Since ML can only increase with b, it is conservative to use the value associated with the initial crack size
(unless further sophistication is warranted).

The dJ/da value to be used is to be found from the material's J-integral R-curve. On such an R-curve,
dJ/da is the slope of the curve, after initiation of crack growth, and usually the slope gradually diminishes
with growth of the crack. Indeed, Eq. (11) may be used with the plastic hinge analysis methods here to ®nd
a Jmax associated with /max at the hinge. Then this Jmax can be used to enter the R-curve to obtain dJ/da for
this hinge at the crack for any number of hinges short of ®nal collapse.

However, adopting the J-modi®ed method of Ernst (1983) for analysis of R-curve material property
data, it is noted that a plot of that data on J versus dJ/da (or T) diagram may be empirically bounded
(minimum values) by a rectangular hyperbola, that is

J� � dJ
da

� �
� h �constant�: �16�

Taking an appropriate value of h from the available data, then

dJ
da
� h

J
: �17�

Again, making use of Eq. (11) to ®nd Jmax for plastic hinge conditions at the crack site, the result is

Jmax � dML

db
/max ÿ J0; �18�

where J0 is a constant accounting for passing through the elastic range while developing limit conditions
that may be conservatively neglected. Then Eq. (18) leads to
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Jmax6
dML

db
/max; �19�

where upon Eq. (17) gives

dJ
da

� �
min

P
h

dML

db /max

; �20�

which may be used conservatively to evaluate D/=DM in Eq. (15). Note that the /max used in Eq. (20) is the
maximum hinge rotation at the crack site for each appropriate partially developed hinge mechanism, as
analyzed herein, short of collapse.

If this method using J-integral R-curve data shows the crack is stable, then it has done so conservatively,
but with two reservations. First, it is assumed that the application itself is to a circumstance where the
R-curve data is of higher (or equal) constraint conditions (toward plane strain). Second, it is also assumed
that the application is made to conditions where J-controlled growth applies by Hutchinson and Paris
(1979); that is

dJ
da

b
J
� 1 �21�

for the application, otherwise further considerations must be invoked to use the J method. However, the
method discussed in the previous section, associated with Fig. 7, of evaluating a cracked element of a ring
directly has no such limitations.
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